Reducing Compensatory Movements in Stroke Therapy through the Use of Robotic Devices and Augmented Feedback

 

 

For stroke survivors, the use of compensatory movements can lead to a reduction of range of motion, pain, and a pattern of “learned non-use”. A common compensatory movement present during upper limb reaching is trunk displacement. Although this motion has been identified as an important one to be reduced, few strategies for addressing this problem have been considered. The existing strategies require physical restraint of the person to the back of a chair, making them undesirable for use in unsupervised therapy. As a result, there is a current need for alternate methods that promote the use of correct movement patterns both in the clinic and in the home. In this sense, technology can act as an enabler to create new ways of reducing trunk compensation. Still, there is a gap in the literature as trunk compensation has only been investigated as a secondary theme in robotic and computer-aided rehabilitation. Consequently, in this project I will look into the reduction of trunk compensation using robotic devices and commercially available technology, to enable a focus on the quality of the movements in unsupervised therapy. The potential results from this PhD could later be applied and generalized to other modes of compensation in stroke and other neurological disabled populations.

 

Supervisor: Machiel Van der Loos

Researcher: Bulmaro Valdes Benavides

Committee Members: Anthony Hodgson, Nicola Hodges and Sidney Fels